Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Nuclear beta decays provide an excellent probe of fundamental symmetries due to their mediation by the weak interaction. In particular, precise measurements of these decays provide constraints on the unitarity of the Cabbibo-Kobayashi-Maskawa (CKM) quark-mixing matrix. While superallowed pure Fermi decays currently set the most precise limits, the alternative suite of superallowed mixed mirror decays has been ill-studied. These nuclei can provide an important consistency check of calculation and measurement methods employed for the pure Fermi decays, more critically needed now in the wake of a 2.4σ deviation from unitarity of the CKM matrix. In order to remedy the gap in data for mirror decays, the Superallowed Transition Beta-Neutrino Decay Ion Coincidence Trap (St. Benedict) facility is being commissioned at the University of Notre Dame's Nuclear Science Laboratory (NSL). In this paper, we present first results of the commissioning of the St. Benedict facility on-line at the TwinSol radioactive beam facility. The results of initial commissioning experiments involving the St. Benedict gas catcher, RF carpet, RFQ ion guide and RFQ cooler-buncher will be presented.more » « less
- 
            Abstract Beavers (Castor canadensis) are rapidly colonizing the North American Arctic, transforming aquatic and riparian tundra ecosystems. Arctic tundra may respond differently than temperate regions to beaver engineering due to the presence of permafrost and the paucity of unfrozen water during winter. Here, we provide a detailed investigation of 11 beaver pond complexes across a climatic gradient in Arctic Alaska, addressing questions about the permafrost setting surrounding ponds, the influence of groundwater inputs on beaver colonization and resulting ponds, and the change in surface water and aquatic overwintering habitat. Using field measurements, in situ dataloggers, and remote sensing, we evaluate permafrost, water quality, pond ice phenology, and physical characteristics of impoundments, and place our findings in the context of pond age, local climate, permafrost setting, and the presence of perennial groundwater inputs. We show beavers are accelerating the effects of climate change by thawing permafrost adjacent to ponds and increasing liquid water during winter. Beavers often exploited perennial springs in discontinuous permafrost, and summertime water temperatures at spring‐fed (SF) beaver ponds were roughly 5°C lower than sites lacking springs (NS). Late winter liquid water was generally present at pond complexes, although liquid water below seasonal ice cover was shallow (5–82 cm at SF and 5–15 cm at NS ponds) and ice was thick (median: 85 cm). Water was less acidic at SF than NS sites and had higher specific conductance and more dissolved oxygen. We estimated 2.4 dams/km of stream at sites on the recently colonized (last ~10 years) Baldwin Peninsula and 7.4 dams/km on the Seward Peninsula, where beavers have been present longer (~20+ years) and groundwater‐surface water connectivity is more common. Our study highlights the importance of climatic and physiographic context, especially permafrost presence and groundwater inputs, in determining the characteristics of the Arctic beaver pond environment. As beavers continue their expansion into tundra regions, these characteristics will increasingly represent the future of aquatic and riparian Arctic ecosystems.more » « lessFree, publicly-accessible full text available September 28, 2026
- 
            This dataset contains water quality measurements and snow and ice data from Alaskan beaver ponds collected during the winter as part of the Arctic Beaver Observation Network and NSF ANS #1850578. The Arctic Beaver Observation Network is a 5-year project (2021-2026) funded by the National Science Foundation. The natural science part of the project uses remote sensing to observe the progress and impacts of beaver engineering in the Arctic, starting in Alaska and extending into Canada and Eurasia. The project also establishes field sites at tundra beaver ponds to study the implications of beaver engineering on hydrology and permafrost, as well as pond evolution documented using Unmanned Aerial Systems (UAS). Remote sensing work will map beaver ponds over time. Field measurements at tundra beaver ponds are made in August and late March. Data generated by field measurements include water level and temperature from pressure-transducers, subsurface imaging from ground-penetrating radar, sonar measurements for beaver pond bathymetry, tabular data associated with water quality measurements, and ice thickness and water depth (in winter). Data is also posted from UAS surveys: annual visible and multi-spectral surveys, as well as snow depth.more » « less
- 
            This dataset contains water level, water temperature, and barometric pressure at Alaskan beaver ponds collected as part of the Arctic Beaver Observation Network and NSF ANS #1850578. The Arctic Beaver Observation Network is a 5-year project (2021-2026) funded by the National Science Foundation. The natural science part of the project uses remote sensing to observe the progress and impacts of beaver engineering in the Arctic, starting in Alaska and extending into Canada and Eurasia. The project also establishes field sites at tundra beaver ponds to study the implications of beaver engineering on hydrology and permafrost, as well as pond evolution documented using Unmanned Aerial Systems (UAS). Remote sensing work will map beaver ponds over time. Field measurements at tundra beaver ponds are made in August and late March. Data generated by field measurements include water level and temperature from pressure-transducers, subsurface imaging from ground-penetrating radar, sonar measurements for beaver pond bathymetry, tabular data associated with water quality measurements, and ice thickness and water depth (in winter). Data is also posted from UAS surveys: annual visible and multi-spectral surveys, as well as snow depth.more » « less
- 
            This dataset contains water quality measurements at Alaskan beaver ponds collected during the summer as part of the Arctic Beaver Observation Network and NSF ANS #1850578. The Arctic Beaver Observation Network is a 5-year project (2021-2026) funded by the National Science Foundation. The natural science part of the project uses remote sensing to observe the progress and impacts of beaver engineering in the Arctic, starting in Alaska and extending into Canada and Eurasia. The project also establishes field sites at tundra beaver ponds to study the implications of beaver engineering on hydrology and permafrost, as well as pond evolution documented using Unmanned Aerial Systems (UAS). Remote sensing work will map beaver ponds over time. Field measurements at tundra beaver ponds are made in August and late March. Data generated by field measurements include water level and temperature from pressure-transducers, subsurface imaging from ground-penetrating radar, sonar measurements for beaver pond bathymetry, tabular data associated with water quality measurements, and ice thickness and water depth (in winter). Data is also posted from UAS surveys: annual visible and multi-spectral surveys, as well as snow depth.more » « less
- 
            Abstract In recent decades the habitat of North American beaver (Castor canadensis) has expanded from boreal forests into Arctic tundra ecosystems. Beaver ponds in Arctic watersheds are known to alter stream biogeochemistry, which is likely coupled with changes in the activity and composition of microbial communities inhabiting beaver pond sediments. We investigated bacterial, archaeal, and fungal communities in beaver pond sediments along tundra streams in northwestern Alaska (AK), USA and compared them to those of tundra lakes and streams in north‐central Alaska that are unimpacted by beavers.β‐glucosidase activity assays indicated higher cellulose degradation potential in beaver ponds than in unimpacted streams and lakes within a watershed absent of beavers. Beta diversity analyses showed that dominant lineages of bacteria and archaea in beaver ponds differed from those in tundra lakes and streams, but dominant fungal lineages did not differ between these sample types. Beaver pond sediments displayed lower relative abundances of Crenarchaeota and Euryarchaeota archaea and of bacteria from typically anaerobic taxonomic groups, suggesting differences in rates of fermentative organic matter (OM) breakdown, syntrophy, and methane generation. Beaver ponds also displayed low relative abundances of Chytridiomycota (putative non‐symbiotic) fungi and high relative abundances of ectomycorrhizal (plant symbionts) Basidiomycota fungi, suggesting differences in the occurrence of plant and fungi mutualistic interactions. Beaver ponds also featured microbes with taxonomic identities typically associated with the cycling of nitrogen and sulfur compounds in higher relative abundances than tundra lakes and streams. These findings help clarify the microbiological implications of beavers expanding into high latitude regions.more » « less
- 
            Precise measurements of nuclear beta decays provide a unique insight into the Standard Model due to their connection to the electroweak interaction. These decays help constrain the unitarity or non-unitarity of the Cabibbo–Kobayashi–Maskawa (CKM) quark mixing matrix, and can uniquely probe the existence of exotic scalar or tensor currents. Of these decays, superallowed mixed mirror transitions have been the least well-studied, in part due to the absence of data on their Fermi to Gamow-Teller mixing ratios (ρ). At the Nuclear Science Laboratory (NSL) at the University of Notre Dame, the Superallowed Transition Beta-Neutrino Decay Ion Coincidence Trap (St. Benedict) is being constructed to determine the ρ for various mirror decays via a measurement of the beta–neutrino angular correlation parameter (aβν) to a relative precision of 0.5%. In this work, we present an overview of the St. Benedict facility and the impact it will have on various Beyond the Standard Model studies, including an expanded sensitivity study of ρ for various mirror nuclei accessible to the facility. A feasibility evaluation is also presented that indicates the measurement goals for many mirror nuclei, which are currently attainable in a week of radioactive beam delivery at the NSL.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
